Departement de Mathematique d'Orsay
Département de Mathématiques d'Orsay
Amaury Freslon
Université Paris-Saclay
CRNS UMR 8628
Institut de Mathématique d'Orsay - Bâtiment 307
91405 Orsay Cedex
France


Courrier électronique :
Bureau : 2L22 Bât. 307
Photo

I am currently Maître de Conférence at Université Paris-Sud in the Topology and dynamics team. I am interested in the study of topological quantum groups, their structure and properties. I am also a member of the ANR projects AODynG and Noncommutative Analysis on Groups and Quantum Groups.

Here is my CV in english and in french.

Si vous cherchez ma page d'enseignement, elle se trouve ici.

Preprints

  • The Gaussian part of a compact quantum group (with U. Franz and A. Skalski), arxiv preprint pdf.
  • Abstract
  • Tannaka-Krein reconstruction and ergodic actions of easy quantum groups (with F. Taipe and S. Wang), arxiv preprint pdf.
  • Abstract

Publications

  1. Free wreath products with amalgamation, to appear in Comm. Alg. : link and pdf (old version).
  2. Abstract
  3. Cutoff profiles for quantum Lévy processes and quantum random transpositions (with L. Teyssier and S. Wang, to appear in Probab. Theory Related Fields : link and pdf (old version).
  4. Abstract
  5. On the classification of partition quantum groups, Exp. Math. 39 (2021), no 2, 238-270 : link and pdf (old version).
  6. Abstract
  7. Positive definite functions and cut-off for discrete groups, to appear in Canad. Math. Bull. 64 (2021), no 2, 306-322 : link and pdf.
  8. Abstract
  9. Topological generation and matrix models for quantum reflection groups (with M. Brannan and A. Chirvasitu), Adv. Math. 363 (2020) : link and pdf.
  10. Abstract
  11. On two-coloured noncrossing partition quantum groups, Trans. Amer. Math. Soc. 372 (2019), no 6, 4471-4508 : link and pdf (old version).
  12. Abstract
  13. On the representation theory of some noncrossing partition quantum groups, Algebr. Represent. Theory. 23 (2019), no 3, 483-492 : link and pdf (old version).
  14. Abstract
  15. Quantum reflections, random walks and cut-off, Internat. J. Math. 29 (2018), no 14, 1850101 : link and pdf (old version).
  16. Abstract
  17. Cut-off phenomenon for random walks on free orthogonal quantum groups, Probab. Theory Related Fields 174 (2019), no3-4, 731-760 : link and pdf (old version).
  18. Abstract
  19. Torsion and K-theory for some free wreath products (with R. Martos), Int. Math. Res. Not. 2020 (2020), no 6, 1639-1670 : link and pdf (old version).
  20. Abstract
  21. Modelling questions for quantum permutations (with T. Banica), Infin. Dimens. Anal. Quantum Probab. Relat. Top. 21 (2018), no 2, 1-26 : link and pdf (old version).
  22. Abstract
  23. The radial MASA in free orthogonal quantum groups (with R. Vergnioux), J. Funct. Anal. 271 (2016), no 10, 2776-2807: link and pdf (old version).
  24. Abstract
  25. Wreath products of finite groups by quantum groups (with A. Skalski), J. Noncommut. Geom. 12 (2018), no 1, 29-68 : link and pdf (old version).
  26. Abstract
  27. On the partition approach to Schur-Weyl duality and free quantum groups (with an appendix by A. Chirvasitu), Transform. Groups 22 (2017), no 3, 707-751 : link and pdf (old version).
  28. Abstract
  29. On bi-free De Finetti theorems (with M. Weber), Ann. Math. Blaise Pascal 23 (2016), no 1, 21-51 : link and pdf (old version).
  30. Abstract
  31. Permanence of approximation properties for discrete quantum groups, Ann. Inst. Fourier 65 (2015), no 4, 1437-1467 : link and pdf (old version).
  32. Abstract
  33. Fusion (semi)rings arising from quantum groups, J. Algebra 417 (2014), 161-197 : link and pdf (revised version).
  34. Abstract
  35. On the representation theory of partition (easy) quantum groups (with M. Weber), J. Reine Angew. Math. 720 (2016), 155-197 : link and pdf (old version).
  36. Abstract
  37. Graphs of quantum groups and K-amenability (with P. Fima), Adv. Math. 260 (2014), 233-280 : link and pdf (old version).
  38. Abstract
  39. CCAP for universal discrete quantum groups (with K. De Commer and M. Yamashita, with an appendix by S. Vaes), Comm. Math. Phys. 331 (2014), no 2, 677-701 : link and pdf (old version).
  40. Abstract
  41. Examples of weakly amenable discrete quantum groups, J. Funct. Anal. 265 (2013), no 9, 2164-2187 : link and pdf (old version).
  42. Abstract
  43. A note on weak amenability for free products of discrete quantum groups, C. R. Acad. Sci. Paris 350 (2012), no 7-8, 403-406 : link and pdf (old version).
  44. Abstract

Reports

  1. On the classification of non-crossing partition quantum groups, Oberwolfach reports 45 (2019).
  2. Cut-off for quantum random walks, Oberwolfach reports 22 (2018).

Dissertations

  • Études des groupes quantiques libres : Analyse, Algèbre et Probabilités, Habilitation à diriger des recherches (Habilitation thesis) : pdf and slides.
  • Approximation properties for discrete quantum groups (PhD thesis) : pdf.
  • Abstract

Books

  1. Mathématiques, exercices incontournables - MPSI (avec J. Freslon, M. Hézard and J. Poineau), lien.
  2. Mathématiques, exercices incontournables - PCSI/PTSI (avec J. Freslon, M. Hézard and J. Poineau), lien.

Other documents

  • Slides (in english) from a talk on Easy quantum actions.
  • Slides (in english) from a talk on Quantum groups in the heat.
  • Slides (in english) from a talk on How to (badly) quantum shuffle cards.
  • Slides (in english) from a talk on Diffusion of quantum orthogonal Brownian motion.
  • Notes (in english) from a lecture series on The classification of partition quantum groups.
  • Notes (in english) from a graduate course Introduction to compact matrix quantum groups and their combinatorics.
  • Notes (in english) from a talk on Classical spaces and quantum symmetries.
  • Notes (in english) from a talk on the Cut-off for quantum random walks.
  • Notes (in french) from a talk on Partition algebras and free quantum groups.
  • Notes (in french) from a talk on Approximation properties for quantum groups.
  • An introduction (in french) to the Elliott program.
  • An introduction (in french) to C*-simplicity.
  • An exposition (in english) of the ergodic theorem for compact groups.
  • An exposition (in french) of A. Connes' result on the fundamental group of a property (T) factor.



Logo
Département de Mathématiques
, Université Paris-Sud, Bât. 425, F-91405 Orsay Cedex ,France