Submitted
- Optimal stopping in latent diffusion models
Y-H. Wu, Q. Berthet, G. Biau, C. Boyer, R. Elie, P. Marion.
[pdf]
[Hal]
[arXiv]
- Statistical advantage of softmax attention: insights from single location regression
O. Duranthon, P. Marion, C. Boyer, B. Loureiro, L. Zdeborova.
[pdf]
[arXiv]
- Fast kernel methods: Sobolev, physics-informed, and additive models
N. Doumèche, F. Bach, G. Biau, C. Boyer.
[pdf]
[Hal]
- Forecasting time series with constraints
N. Doumèche, F. Bach, E. Bedek, G. Biau, C. Boyer, Y. Goude.
[pdf]
[Hal]
[arXiv]
2025
- Attention-based clustering
R. Maulen-Soto, C. Boyer, P.Marion.
[pdf]
[Hal]
Conference on Neural Information Processing Systems (NeurIPS 2025).
- Physics-Informed Kernel Learning
N. Doumèche, F. Bach, G. Biau, C. Boyer.
Journal of Machine Learning Research (JMLR 2025)
[pdf] [hal]
[arXiv]
[journal]
- Taking a Big Step: Large Learning Rates in Denoising Score Matching Prevent Memorization
Y-H. Wu, P. Marion, G. Biau, C. Boyer.
Conference on Learning Theory (COLT 2025)
[Hal]
[arXiv]
- Optimal Transport-based Conformal Prediction
G. Thurin, K. Nadjahi, C. Boyer.
International Conference on Machine Learning (ICML 2025)
[OpenReview]
[Hal]
[arXiv]
- Attention layers provably solve single-location regression
P. Marion, R. Berthier, G. Biau, C. Boyer.
International Conference on Learning Representations (ICLR 2025)
[OpenReview]
[pdf]
[hal]
[arXiv]
- A primer on classification with missing data
A. Reyero-Lobo, A. Ayme, C. Boyer, E. Scornet.
International Conference on Artificial Intelligence and Statistics (AISTATS 2025)
[OpenReview]
[hal]
- An analysis of the noise schedule in score-based generative models
S. Strasman, A. Ocello, C. Boyer, S. Le Corff, V. Lemaire.
Transactions on Machine Learning Research (TMLR)
[OpenReview]
[hal]
2024
- On the convergence of PINNs
N. Doumèche, G. Biau, C. Boyer.
Bernoulli
[hal]
[arXiv]
[journal]
- Model-based Clustering with Missing Not At Random Data
A. Sportisse, C. Biernacki, C. Boyer, J. Josse, M. Marbac Lourdelle, G. Celeux, F. Laporte.
Statistics and Computing, Springer
[journal]
[hal]
[arXiv]
+ [Accompanying note]
- Physics-informed machine learning as a kernel method
N. Doumèche, F. Bach, G. Biau, C. Boyer.
Conference on Learning Theory (COLT 2024)
[hal]
- Random features models: a way to study the success of naive imputation
A. Ayme, C. Boyer, A. Dieuleveut, E. Scornet.
International Conference on Machine Learning (ICML 2024).
[OpenReview]
[hal]
[arXiv]
2023
- Naive imputation implicitly regularizes high-dimensional linear models
A. Ayme, C. Boyer, A. Dieuleveut, E. Scornet.
International Conference on Machine Learning (ICML 2023).
[Proceedings MLR]
[hal]
- Sparse tree-based initialization for neural networks
P. Lutz, L. Arnould, C. Boyer, E. Scornet.
Eleventh International Conference on Learning Representations (ICLR 2023)
[OpenReview]
[hal]
[arXiv]
- Is interpolation benign for random forest regression?
L. Arnould, C. Boyer, E. Scornet.
26th International Conference on Artificial Intelligence and Statistics (AISTATS 2023)
[Proceedings MLR]
[hal]
2022
- On the asymptotic rate of convergence of Stochastic Newton algorithms
and their Weighted Averaged versions
C. Boyer, A. Godichon-Baggioni.
Computational optimization and applications (2022)
[journal]
[hal]
[arXiv]
- Proximal boosting: aggregating weak learners to minimize non-differentiable losses.
E. Fouillen, C. Boyer, M. Sangnier.
Neurocomputing (2022)
[hal]
[journal]
- Near-optimal rate of consistency for linear models with missing values
A. Ayme, C. Boyer, A. Dieuleveut, E. Scornet.
International Conference on Machine Learning (ICML 2022).
[hal]
[arXiv]
- Robust Lasso-Zero for sparse corruption and model selection with missing covariates
P. Descloux, C. Boyer, J. Josse, A. Sportisse, S. Sardy.
Scandinavian Journal of Statistics (2022).
[hal]
[arXiv]
[journal]
- Sampling rates for l1-synthesis
M. März, C. Boyer, J. Kahn, P. Weiss
Foundations of Computational Mathematics (FoCM) (2022).
[arXiv]
[journal]
2021
- Analyzing the tree-layer structure of Deep Forests
L. Arnould, C. Boyer, E. Scornet.
International Conference on Machine Learning (ICML 2021).
[arXiv]
2020
- Debiasing Stochastic Gradient Descent to handle missing values
A. Sportisse, C. Boyer, A. Dieuleveut, J. Josse
Conference on Neural Information Processing Systems (NeurIPS 2020).
[hal]
[arXiv]
- Estimation and imputation in Probabilistic Principal Component Analysis with Missing Not At Random data.
A. Sportisse, C. Boyer, J. Josse
Conference on Neural Information Processing Systems (NeurIPS 2020).
[arXiv]
- Imputation and low-rank estimation with Missing Non At Random data.
A. Sportisse, C. Boyer, J. Josse
Statistics & Computing, Springer.
[hal]
[arXiv]
[journal]
- Missing Data Imputation using Optimal Transport
B. Muzellec, J. Josse, C. Boyer, M. Cuturi
International Conference on Machine Learning (ICML 2020).
[arXiv]
- On oracle-type local recovery guarantees in compressed sensing.
B. Adcock, C. Boyer, S. Brugiapaglia
Information & Inference (2020).
[journal]
[hal]
[arXiv]
2019
- On representer theorems and convex regularization.
C. Boyer, A. Chambolle, Y. De Castro, V. Duval, F. de Gournay, P. Weiss
SIAM Journal on Optimization (2019)
[journal]
[hal]
[arXiv]
2018
- Convex Regularization and Representer Theorems.
C. Boyer, A. Chambolle, Y. De Castro, V. Duval, F. de Gournay, P. Weiss
iTWIST'2018
[pdf]
[arXiv]
2017
- Compressed sensing with structured sparsity and structured acquisition.
C. Boyer, J. Bigot, P. Weiss
Applied and Computational Harmonic Analysis (2017).
[journal]
[hal]
[arXiv]
[journal]
2016
- On the generation of sampling schemes for Magnetic Resonance Imaging.
C. Boyer, N. Chauffert, P. Ciuciu, J. Kahn, P. Weiss
SIAM Journal on Imaging Sciences, Volume 9, Issue 4, pp. 1525-2098 (2016).
[journal]
- An analysis of block sampling strategies in compressed sensing.
J. Bigot, C. Boyer, P. Weiss
IEEE Transactions on Information Theory, vol. 62, no. 4, pp. 2125-2139 (2016).
[journal]
[arXiv]
2015
- Sur la génération de schémas d'échantillonnage compressé en IRM
P. Weiss, N. Chauffert, C. Boyer, P. Ciuciu
GRETSI (2015).
[pdf]
-
Échantillonnage compressé avec acquisition structurée et parcimonie structurée
C. Boyer, J. Bigot, P. Weiss
GRETSI 2015. [pdf]
2014
- An algorithm for variable density sampling with block-constrained acquisition
C. Boyer, P. Weiss and J. Bigot
SIAM Imaging Science 2014 (Vol. 7, Issue 2).
[journal] ,
[arXiv]
2013
- Sampling by blocks of measurements in compressed sensing.
J. Bigot, C. Boyer, P. Weiss
Proc. SampTA (2013).
[pdf].
2012
- HYR2PICS: Hybrid Regularized Reconstruction for Combined Parallel Imaging and Compressive Sensing in MRI.
C. Boyer, P. Ciuciu, P. Weiss and S. Mériaux
Proc. ISBI 2012. [pdf].
© 2017 CB