Séminaire Géométrie Topologie Dynamique
Invariants spectraux et formules de traces à la Selberg sur les variétés CR avec action de cercle
05
juin 2025
juin 2025
Intervenant : | Michel Rumin |
Institution : | LMO |
Heure : | 14h00 - 15h00 |
Lieu : | 2L8 |
L'invariant êta et la torsion analytique d'une variété riemannienne sont définis par des valeurs spéciales de fonctions purement spectrales liées au complexe de de Rham. Dans cet exposé, nous nous intéresserons au cas des variétés CR avec action de cercle. Celles-ci possèdent des opérateurs hypoelliptiques naturels servant d'alternative au complexe de De Rham, et conduisant également à des expressions liées à l'invariant êta et la torsion analytique. Nous verrons que ces fonctions spectrales particulières s'interprètent dans leur ensemble à l'aide de données topologiques ou dynamiques, à travers des formules de traces à la Selberg. Ces identités s'obtiennent ici hors du cadre habituel des espaces localement symétriques.