Retour

----------------------------- A few Videos and Slides : -----------------------------

- Finite Fourier transform (IHP, 2025) V0 and (Cetraro, 2025) pdf.

- Jeu de culture mathématique (IHES, Journée Maths en Herbe, 2025), pdf,

- Convolution and square in abelian groups (Tokyo 2022), V0, pdf, (ICTS 2024), V0, (IHES 2025) V0.

- Are p-adic Lie groups useful beyond Number Theory? (NUS visio, 2021), pdf.

- Harmonic functions on the Heisenberg group (8ECM visio, 2021), V0 and pdf.

- Harish-Chandra tempered representations and homogeneous spaces (TMC DLS 2020) V0 .

- Recurrence on affine grassmannians (HIM Bonn, 2020), pdf.

- 60th Birthday talk (Cetraro 2019) V0 or V0 1Go.

- Arithmeticity of discrete subgroups (A short introduction) V0, (Tokyo 2019) V0.

- Summer Schools (IHES Paris 2019) V1, V2, V3, V4, (Fields Toronto 2018) V1, V2, V3, V4.

- Dense subgroups of simple Lie groups (CIRM Marseille 2017) V0.

- Harmonic quasiisometric maps (UMD Washington 2016) V0.

- Regularity of stationary measures (ND Notre Dame 2015) V0.

- Conformal dynamics (MSRI Berkeley 2015) V1, V2, V3.

- Semigroups in semisimple groups (MSRI Berkeley 2015) V1, V2.

- Recurrence on the space of lattices (ICM Seoul 2014) V0 and pdf1, pdf2.

- Discrete subgroups of SL(3,R) (Tours + Daejeon 2014) V1, V2.

- Spectral gap for simple groups (Newton Cambridge 2014) V0.

- Random walk on p-adic flag varieties (IHP Paris 2014 and Newton Cambridge 2014) V1, V2 and pdf.

- On divisible convex sets (GEAR Urbana-Champaign 2012) V1, V2, V3 and pdf1, pdf2, pdf3, pdf4.

- Random walk on homogeneous spaces (Takagi Kyoto 2012) V0.

- Stationary measures on finite volume homogeneous spaces (Clay Harvard 2011) V0.

- Invariant subsets on homogeneous spaces (MSRI Berkeley 2011) V0.

- Dynamique des groupes linéaires (Louis Antoine Rennes 2010) V1, V2, V3.

- Invariant subsets and stationary measures on homogeneous spaces (Oberwolfach, 2009), pdf.

- S-integral points on symmetric varieties (Zaragoza, 2007), pdf.

- Divisible convex sets (Ostend, 2005), pdf.

Retour