• Accueil »
  • Etudiants »
  • Masters »
  • Mathématiques et Applications »
  • M2 »
  • Analyse Modélisation Simulation
  • Analyse Modélisation Simulation

    Présentation

    Les équations aux dérivées partielles et l’analyse en général ont connu des progrès spectaculaires dans les dernières décennies, et simultanément les progrès des méthodes numériques et l’amélioration des performances des ordinateurs ont fait de la simulation numérique un outil essentiel dans l’industrie comme dans la recherche.

    L’objectif du parcours « Analyse, Modélisation, Simulation » (en abrégé : AMS) est de proposer une offre complète de formation dans ces domaines, allant des approches les plus théoriques jusqu’aux développements concrets (modélisation et simulations numériques). La mise en œuvre et le développement de méthodes d’approximation numérique nécessitent en premier lieu une bonne connaissance des équations mathématiques (équations différentielles, équations aux dérivées partielles) mais aussi des phénomènes dont elles rendent compte. Enfin, l’implémentation efficace des algorithmes d’approximation associés ne peut se concevoir sans de solides connaissances en informatique.

    Le parcours AMS propose une offre de cours très large, comprenant non seulement de nombreux cours en mathématiques fondamentales et appliquées mais aussi des cours en physique et en informatique. L’étudiant pourra alors établir assez librement un programme pédagogique suivant son projet professionnel et en concertation avec ses tuteurs académiques.

    Deux finalité distinctes sont proposées au sein du parcours AMS :

    • la finalité « Analyse, Modélisation » (AM) permettant d’acquérir une solide formation en mathématiques fondamentales et appliquées et une initiation à la recherche académique.
    • la finalité « Modélisation, Simulation » (MS) permettant d’acquérir une forte compétence en mathématiques appliquées et en simulation numérique, en vue d’une insertion professionnelle dans le domaine de la recherche ou de la R&D, aussi bien académique qu’industrielle.

    Le parcours AMS est conçu pour former à la fois :

    • des chercheurs et des enseignants-chercheurs en mathématiques fondamentales et appliquées (équations aux dérivées partielles, analyse numérique, calcul scientifique).
    • des ingénieurs maîtrisant tous les aspects du calcul scientifique (modélisation mathématique de problèmes issus de la physique, sélection des méthodes numériques appropriées à leur résolution, analyse numérique, mise en œuvre de ces méthodes sur ordinateur).

    Modalités et inscription

    Les candidatures pour la rentrée de septembre 2022 sont ouvertes !

    Modalités d'inscription aux Masters 2 Paris-Saclay

    Je candidate

    Contacts et infos pratiques

    Responsables :

    UVSQ : Christophe Chalons (parcours AMS)
    Université Paris-Saclay : Matthieu Léautaud (parcours AMS, finalité AM)
    ENSTA-ParisTech IP-Paris : Sonia Fliss (parcours AMS, finalité MS)

    Secrétariat pédagogique :

    UVSQ : Liliane Roger
    Université Paris-Saclay (Orsay) : Séverine SIMON et Florence FERRANDIS
                      (Bureau 1A2, Laboratoire de Mathématiques d’Orsay, Bât. 307, Université Paris-Saclay, ORSAY)
    ENSTA-ParisTech IP-Paris :  Anne Richard

    Inscriptions administratives :

    Les inscriptions administratives se font à l'UVSQ via le pôle Masters de la Scolarité :
    Services des inscriptions : inscription.sciences@uvsq.fr (01 39 25 46 85)
    Gestionnaire pour le M2 AMS : philippe.canes@uvsq.fr
    Responsable du pôle Masters : tracy.diantantu@uvsq.fr
    Responsable du service de Scolarité : morgane.deschamps@uvsq.fr


    L'UVSQ ferme pour les congés d'été du 23 juillet au 23 aout.

    Programme

    Dates importantes :

    • Réunion de rentrée : lundi 29 août 2022, 13h30-14h30, Université Paris-Saclay, Orsay, Bâtiment 307, salle 2L8.

               Slides de la réunion de présentation de l'année 2022-2023

     

    • Cours de pré-rentrée : semaine du 29 août au 2 septembre : Analyse Fonctionnelle (salle 3L8) et Analyse Numérique (salle 0D10), Université Paris-Saclay, Orsay, Bâtiment 307 :

    Lundi 29/08 :        Analyse numérique 9h30-12h30 / Analyse fonctionnelle 14h30-17h30 (+ réunion de rentrée 13h30-14h30)
    Mardi 30/08 :       Analyse numérique 9h30-12h30 / Analyse fonctionnelle 14h-17h
    Mercredi 31/08 : Analyse numérique 9h30-12h30 / Analyse fonctionnelle 14h-17h
    Jeudi 01/09 :       Analyse numérique 9h30-12h30 / Analyse fonctionnelle 14h-17h
    Vendredi 02/09 : Analyse numérique 9h30-12h30 / Analyse fonctionnelle 14h-17h

    Mercredi 7/09, 14/09 et 21/09 : informatique 14h-17h (salles ci-dessous)

    Vendredi 9/09, 16/09 et 23/09 : informatique 14h-17h (salles ci-dessous)

     
    • Début des cours du bloc 1 : lundi 5 septembre 2022.

    Le programme de la finalité "Modélisation-Simulation" est disponible sur https://uma.ensta-paris.fr

    La finalité « Analyse Modélisation » du M2 AMS est constituée de cours principalement théoriques (cours AM) et de cours transverses communs avec la finalité « Modélisation Simulation » (cours AMS). Il est possible de choisir des cours de la finalité « Modélisation Simulation » avec l’accord d’un responsable pédagogique. Les cours les plus appropriés seront signalés aux étudiants.

    Le premier semestre (blocs 1 et 2) est généraliste et pose de solides bases en mathématiques.

    Les étudiants poursuivent au deuxième semestre (bloc 3) des cours de spécialisation et effectuent un stage ou un mémoire de quatre mois entre début mai et fin août.

    Liste complète des cours AMS pour l'année 2022-2023

    Emploi du temps général AMS 2022-2023

    Emploi du temps - remise à niveau (avec salles à orsay)

    Calendrier universitaire UPSAY 2022-2023

    Emploi du temps 2022-2023 (avec salles à Orsay) MàJ 16/11/22

    Emploi du temps 2022-2023 (avec salles à l'ENSTA)

    Premier semestre (5 Septembre 2022-10 Février 2023) : 30 ECTS

    Masquer le programme de cours

     

    Bloc 1 (5 Septembre 2022-18 Novembre 2022, cours à 5 ECTS) : 15 ECTS parmi

    • Equations elliptiques linéaires et non-linéaires (AM)
    • Introduction à la théorie spectrale (AM)
    • Introduction à l’analyse semiclassique (AM)
    • Eléments finis en mécanique des fluides et suivi d’interfaces (AMS)
    • Contrôle des EDO (AMS)
    • Méthodes variationnelles pour l’analyse et la résolution de problèmes non coercifs (AMS)
    • Problèmes inverses pour les systèmes gouvernés par des EDPs (AMS)
    • Homogénéisation périodique (AMS)
    • Calcul scientifique parallèle (MS)
    • Méthodes numériques et algorithmiques modernes pour la résolution des équations intégrales (MS)
    • Modélisation des plasmas et des systèmes astrophysiques (MS)

     

    Bloc 2 (21 Novembre 2022-10 Février 2023, cours à 5 ECTS) : 15 ECTS parmi

    • Equations dispersives (AM)
    • Calcul des variations et théorie géométrique de la mesure (AM)
    • Analyse fonctionnelle pour les équations de Navier Stokes (AM)
    • Analyse théorique et numérique des systèmes hyperboliques (AMS)
    • Techniques de discrétisations avancées pour les problèmes d’évolution (AMS)
    • Analyse mathématique et résolution numérique des problèmes de diffraction en domaine non borné (AMS)
    • Modèles mathématiques et leur discrétisation en électromagnétisme (AMS)
    • Équations intégrales de frontière (AMS)
    • Optimisation sans gradient et applications en calcul scientifique (AMS)
    • Méthodes de Moments dérivées d’une équation cinétique (AMS)
    • Introduction à l’imagerie médicale (AMS)
    • Introduction à la quantification d’incertitudes (MS)
    • Méthodes numériques avancées et calcul haute performance pour la simulation de phénomènes complexes (MS)
    • Modélisation et simulation des écoulements de fluides en géosciences (MS)
    • Programmation hybride et multi-coeurs (MS)


    Second semestre (30 ECTS)

    Masquer le programme de cours

    Pendant le S2, il faut valider 9 ECTS de cours, et effectuer un mémoire ou stage pour 21 ECTS.

    Bloc 3 (13 Février-31 mars 2023, cours à 3 ECTS) : 9 ECTS parmi

    • Inégalités de Carleman et applications (AM)
    • Introduction à l’étude des résonances quantiques (AM)
    • Transport optimal (AM)
    • Modèles cinétiques (AM)
    • Contrôle géométrique (AM)
    • Contrôle optimal des EDP (AM)
    • Homogénéisation stochastique (AMS)
    • Analyse théorique et numérique des systèmes non-strictement hyperboliques (AMS)
    • Modélisation mathématique et estimation en biomécanique cardiaque – De la théorie aux applications médicales (AMS)
    • Méthodes hybrides pour la diffraction à hautes fréquences (MS)
    • Éléments Finis et Éléments de Frontière : Parallélisation, Couplage et Performance (MS)
    • Génération et adaptation de maillage pour le calcul scientifique (MS)
    • Simulation numérique en physique des plasmas (MS)
    • Simulation numérique en astrophysique (MS)
    • Visualisation Scientifique (MS)

    Stage ou mémoire (début avril - fin août) : 21 ECTS

    • Un compte-rendu (au plus une trentaine de pages) doit être envoyé à Matthieu Léautaud et Christophe Chalons avant la fin de la première semaine de septembre,
    • Les soutenances auront toutes lieu en septembre.
    • La présence de l’encadrant du stage est préférable (dans la mesure du possible, mais pas obligatoire). Merci de communiquer à Anne Richard l’adresse mail de votre encadrant principal afin qu’elle lui envoie un document d’évaluation du stage.

    Bourses

    La Fondation Mathématique Jacques Hadamard (FMJH) offre des bourses de Master.
    En savoir plus

    Je candidate