Actualités
Le M2 Mathématiques et Intelligence artificielle est conçu en continuité du M1 Mathématiques et Intelligence Artificielle .
Il est porté conjointement par le département de Mathématique d’Orsay et Centrale-Supelec, avec le soutien du département d’informatique et du programme SaclAI-school.
Il ouvrira à la rentrée 2023.
Présentation
Objectifs
Le mathématiques jouent un rôle important en intelligence artificielle (IA), et notamment en apprentissage. Les sciences des données, qui allient modélisation mathématique, statistique, informatique, visualisation et applications ont pour objectif de passer du stockage et de la diffusion de l’information à la création de connaissances.
Ce passage des données aux connaissances requiert une approche interdisciplinaire qui s’appuie fortement sur le traitement statistique de l’information (statistiques mathématiques, statistiques numériques, apprentissage statistique ou machine learning).
La grande dimension pousse à l’utilisation de nouveaux outils issus de différentes branches des mathématiques (analyse fonctionnelle, analyse numérique, optimisation convexe et non convexe) dont il s’agit d’acquérir la compréhension.
Ce parcours permet de maîtriser les enjeux et techniques mathématiques qui fondent l'apprentissage automatique, tout en donnant de solides compétences informatiques pour le développement de projets en apprentissage, sciences des données et IA.
Organisation
Ce parcours associe des cours théoriques et méthodologiques complétés par des projets en « vraie grandeur » faisant intervenir tous les aspects des sciences des données, depuis l’acquisition jusqu’à l’exploitation et l’analyse. Une partie significative du parcours est validée sous forme de projets.
La formation se finit par un stage de quatre mois minimum, et débute au 1er avril. Ce stage doit présenter un enjeu scientifique réel et recevoir l’agrément d’un enseignant du master.
Débouchés
Il existe actuellement un large déficit d’ingénieurs de très « haut-niveau » en datasciences aussi bien dans des start-ups que dans des grandes entreprises. Ces nouveaux métiers de « datascientists » sont multiformes, ils vont de la mise en place de nouvelles générations de systèmes d’informations décisionnels aux développements d’applications complètement nouvelles (autour du e-commerce, de la recommandation, du minage de réseaux sociaux, etc..).
Le besoin de doctorants est également important dans ce domaine d’innovations de rupture. Les propositions de thèses sont nombreuses dans la recherche publique (Université, CNRS, INRIA, CEA, CNES, INRA, INSERM, LETI, etc.) et dans les grands laboratoires de recherche dans l’industrie (Aérospatiale, Alcatel, Orange, Sagem, General Electric, Matra, Philips, Siemens, Thales, EDF, etc.).
Contacts et infos pratiques
Responsables :
Université Paris-Saclay : Gilles Blanchard et Christine Keribin
Secrétariat pédagogique :
Université Paris-Saclay (Orsay) : Séverine SIMON et Florence FERRANDIS
Tél. 01 69 15 71 53 / 5 31 66 (Bureau 1A2, Laboratoire de Mathématiques d’Orsay, Bâtiment 307, Université Paris-Saclay, ORSAY)
Programme
Le M2 Mathématiques et Intelligence artificielle est structuré en trois périodes de cours (septembre à début novembre, début novembre à mi-janvier, mi janvier à fin mars). La période début avril à fin septembre est réservée au stage.
Son programme propose des modules obligatoires et des modules optionnels. En fonction des modules, les cours ont lieu au laboratoire de mathématique d'Orsay, à CentraleSupelec ou laboratoire d'informatique de Paris-Saclay.
Les modules optionnels sont conçus pour permettre à l'étudiant.e de choisir son curseur entre un programme très mathématique et un programme plus appliqué.
Semestre 1
Période 1 (septembre à début novembre)
Modules obligatoires:
- Data challenge et méthodes supervisées avancées (5 ECTs): obligatoire, laboratoire de mathématiques d'Orsay
- Méthodes non supervisées avancées (5 ECTS), obligatoire, laboratoire de mathématiques d'Orsay
Modules optionnels
- Statistique en grande dimension (5 ECTs), laboratoire de mathématiques d'Orsay
- Modélisation en grande dimension (5 ECTs), CentraleSupelec
- Optimisation ( 5 ECTs), CentraleSupelec
- Plateformes et Langages de Programmation pour les données massives (5 ECTS), CentraleSupelec
- Signal processing (2.5 ECTs), laboratoire d'informatique
- Probabilistic generative models (2.5 ECTS), laboratoire d'informatique
Période 2 (novembre à mi janvier)
Module obligatoire:
- Théorie et applications en reinforcement Learning (5 ECTs): obligatoire, laboratoire de mathématiques d'Orsay
Modules optionnels
- Deep Learning avancé (5 ECTs), CentraleSupelec
- Computer vision ( 5 ECTs), CentraleSupelec
- Deep Learning avancé pour le traitement naturel du langage (2.5 ECTs), laboratoire d'informatique
- Reconnaissance la parole (2.5 ECTS), laboratoire d'informatique
- Choix d'un module à la carte dans un autre M2 de mathématique ou d'informatique (5 ECTs)
Semestre 2
Le semestre 2 est composé d'une période académique (mi janvier à fin mars), se terminant sur le stage de fin d'études.
Période 3 (mi janvier à fin mars), 12 ECTs
Module obligatoire:
- Guidelines in statistical learning (4 ECTs): obligatoire, laboratoire de mathématiques d'Orsay
Modules optionnels
- Statistical Learning theory (4 ECTs), laboratoire de mathématiques d'Orsay
- Online learning (4 ECTS), laboratoire de mathématiques d'Orsay
- Statistical theory of algorithmic fairness (4 ECTs), laboratoire de mathématiques d'Orsay
- Modèles graphiques: inférence discrète et apprentissage (4 ECTs), CentraleSupelec
- Statistique bayésienne et applications (4 ECTs), CentraleSupelec
- Analyse de données multivariées avancée (4 ECTs), CentraleSupelec
- Choix d'un module à la carte dans un autre M2 de mathématique ou d'informatique (4 ECTs)
Séminaires, 2 ECTs
Ayant lieu régulièrement toute l'année, les séminaires présentent des exposés de recherche ou de réalisations industrielles en matière d'intelligence artificielle et de machine learning.
Stage, 16 ECTs
d'une durée de six mois dans une entreprise ou un laboratoire de recherche.
Modalités et inscription
Les candidatures sont ouvertes à tout.e étudiant.e ayant suivi un cursus de M1 de mathématiques avec une composante statistique, de sciences de données et des compétences en informatique ou un cursus de M1 d'informatique ou d'intelligence artificielle avec une solide composante mathématique.
Les candidatures seront ouvertes du 15 avril au 3 juillet 2023.
Je candidateBourses
La Fondation Mathématique Jacques Hadamard (FMJH) offre des bourses de Master.
En savoir plus
Je candidate